Preprocessing
Knowledge Discovery and Data Mining 1 (VO) (706.701)

Roman Kern
ISDS, TU Graz
2018-10-11
Outline

1. Introduction
2. Web Crawling
3. Data Cleaning
4. Outlier Detection
Introduction

Data acquisition & pre-processing
• Initial phase of the Knowledge Discovery process
• ... acquire the data to be analysed
• e.g. by **crawling** the data from the Web
• ... prepare the data
• e.g. by **cleaning** and **removing outliers**
Web Crawling

Acquire data from the Web
Motivation for Web crawling

- **Question**: How does a search engine know that all these pages contain the query terms?
- **Answer**: Because all of those pages have been crawled!
Motivation for Web crawling

Use Cases

- General web search engines (e.g. Google, Yandex, ...)
- Vertical search engines (e.g. Yelp)
- Business Intelligence
- Online Reputation Management
- Data set generation
A web crawler is a specialised Web client
... that uses the HTTP protocol
There are many different names for Web crawlers:
 - Crawler, Spider, Robot (or bot), Web agent, Web scutter,
 - Wanderer, worm, ant, automatic indexer, scraper, ...
Well known instances: googlebot, scooter, slurp, msnbot, ...
Many libraries, e.g. Heretrix, scrapy
 - See also: https://github.com/BruceDone/awesome-crawler
Simple Web crawling schema

Basic Idea

- The crawler starts at an **initial web page**
- The web page is downloaded and its content gets analysed
- ... typically the web page will be HTML
- The **links** within the web page are being **extracted**
- All the links are candidates for the next web pages to be crawled
Simple Web crawling schema
Types of crawlers

- **Batch crawler** - snapshot of the current state, typically until a certain threshold is reached
- **Incremental crawler** - revisiting URLs to keep up to date
- **Specialised crawlers**, e.g focused crawler, topical crawler
Challenges of web crawling

- The **large volume** of the Web
- The **volatility** of the Web, e.g. many Web pages change frequently
- Dynamic Web pages, which are “rendered” in the client
- ... including **dynamically generated** URLs
Challenges of web crawling (cont.)

- Avoid crawling the **same resources** multiple times, e.g. normalise/canonicalise URLs
- Cope with **errors** in downloading, e.g. slow, unreliable connections
- Detect **redirect loops**
- Memory consumption, e.g. large frontier
Challenges of web crawling (cont.)

- Deal with many content types, e.g. HTML, PDF, Flash...
- Gracefully parse invalid content, e.g. missing closing tags in HTML
- Identify the structure of Web pages, e.g. main text, navigation, ...
Web crawling

Extract structured information

- Usually the information is embedded in HTML tailored towards being displayed
 - ... but crawlers would prefer to have the data already in a structured way
- → **Semantic Web**, highly structured, little uptake
- → **Microformats**, less structured, but more uptake
Web crawling & semantic web

- The "Semantic Web" should aid the process of Web crawling
- As it is targeted at making the Web **machine readable**
- Web pages expose their content typically as RDF (Resource Description Language)
 - ... instead of the human readable HTML, e.g. depending on the User Agent
- → specialised crawlers for the Semantic Web
Microformats

- **Microformats** as a lightweight alternative to the “Semantic Web”
- Embedded as HTML markup
- Supported by the major search engines
- http://microformats.org
- e.g. All 4.1+ billion OpenStreetMap nodes have a geo microformat

Example: Taken from openstreetmap.org

```html
<div class="geo">
  <a href="/?lat=47.0591997&amp;lon=15.4632963&amp;zoom=18">
    <span class="latitude">47.0591997</span>,
    <span class="longitude">15.4632963</span>
  </a>
</div>
```
Crawling strategies

Two main approaches

- **Breath first search**
 - Data structure: Queue (FIFO)
 - Keeps shortest path to start

- **Depth first search**
 - Data structure: Stack (LIFO)
 - Quickly moves away from initial start node
Concurrent crawlers

- Run crawlers on **multiple machines** in parallel
- Even geographically dispersed
- → shared data structures need to be synchronised
Deep crawling

Deep Web

- Also called **hidden Web** (in contrast to the surface Web)
- Consider a Web site that contains a form for the user to fill out
 - e.g. a search input box
- The task of the deep crawler is to fill out this box automatically and crawl the result
Topical crawler

- Application: **On-the-fly crawling** of the Web
- Starting point: small set of seed pages
- Crawler tries to find similar pages
- Seed pages are used as reference
Focused Crawler

- Application: collect pages with **specific properties**, e.g. thematic, type
- For example: find all Blogs that talk about football
 - ... where Blog is the type and football is the topic
- Predict how well the pages in the frontier match the criteria
- Typically uses a manually assembled training data set
 - → classification

The distinction between topical crawler and focused crawler is not conclusive in the literature
Focused crawler

- Cues to predict relevant pages
 - **Lexical**, e.g. the textual content of a page
 - **Link topology**, e.g. the structure of the hyperlinks

- Cluster hypothesis: pages lexically (or topologically) close to a relevant page is also relevant with high probability.

- Need to address two issues:
 - Link-content conjecture
 - Link-cluster conjecture
Focused crawler

Link-content conjecture

- Are two pages that link to each other more likely to be lexically similar?

Decay of the cosine similarity as a function of their mean directed link distance
Focused crawler

Link-cluster conjecture

- Are two pages that link to each other more likely to be semantically related?

Decay in mean likelihood ration as a function of mean directed link distance, starting from Yahoo! directory topics
Evaluation

- Examples to measure and compare the performance of crawlers:
 - **Harvest rate**
 - → Percentage of good pages
 - **Search length**
 - → Number of pages to be crawled before a certain percentage of relevant pages are found
Web information extraction

- **Web information extraction** is the problem of extracting target information item from Web pages
- → Two problems
 - 1. Extract information from natural language text
 - 2. Extract structured data from Web pages

The first problem will be presented in the upcoming week, the second in the next minutes
Web information extraction

- Web information extraction *via structure*
- Motivation: Often pages on the Web are generated out of databases
- Data records are thereby transformed via *templates* into web pages
 - For example: Amazon product lists & product pages
- Task: Extract the original data record out of the Web page

This task is often called *wrapper generation*.
Wrapper generation

- Three basic approaches for wrapper generation:
 1. Manual - simple approach, but does not scale for many sites
 2. Wrapper induction - supervised approach
 3. Automatic extraction - unsupervised approach

We will have a look at the wrapper induction.
Wrapper generation

Wrapper induction

- Needs manually labelled training examples
- Learn a classification algorithm
- A simple approach:
 - Web page is represented by a sequence of tokens
 - Idea of landmarks: locate the beginning and end of a target item
Wrapper generation

- Manually labelling is tedious work
- Idea: reduce the amount of work by intelligently **selecting the training examples**
 - → Active Learning approach
- In the case of simple wrapper induction use **co-training**:
 - Search landmarks from the beginning and from the back at the same time
 - Use disagreement as indicator for a training example to annotate
Web crawler and ethics

- Web crawlers **may cause trouble**
 - If too many requests are sent to a single Web site
 - ... it might look like a denial of service (DoS) attack
 - → the source IP will be blacklisted
- Respect the robots.txt file (but it’s not a legal requirement)
- Some bot disguise themselves and try to replicate a user’s behaviour
- Some server disguise themselves, e.g., cloaking (various versions of the same Web page for different clients)
Example: orf.at/robots.txt

do not index the light version
User-agent: *
Disallow: /l/stories/
Disallow: /full

these robots have been bad once:

user-agent: stress-agent
Disallow: /

User-agent: fast
Disallow: /

User-agent: Scooter
Disallow: /
Data Cleaning

Filter out unwanted data
Motivation

- Often data sets will contain:
 - Unnecessary data
 - Missing values
 - Noise
 - Incorrect data
 - Inconsistent data
 - Formatting issues
 - Duplicate information
 - Disguised data

- These factors will have an **impact on the results** of the data mining process

Garbage in → garbage out
Data Cleaning

Unnecessary data

- Remove excess information
- Identify, which parts contain relevant information
- Depends on the final purpose of the KD process
- In case of Web pages:
 - Get rid of navigation, ads, ...
 - Identify the main content of a page
 - Identify the main images
Data Cleaning

Unnecessary data

Web page cleaning

Figure: left: original Web page, right: applied “goose” to extract the article text, article image, meta-data, ...
Sources of **missing values**: faulty equipment, human errors, anonymous data, ...

- e.g. Consider a data set consisting of multiple rows, and in some of the rows some values are missing

Implications of missing data [Barnard&Meng1999]

- Loss of efficiency, due to less data
- Some methods may not handle missing data
- Bias in the (data mining) results

Missing values may indicate errors in the data, but not necessarily so.
Missing values

- **Categorisation** of missing data [Little & Rubin 1987]
 - **MCAR** - Missing completely at random, does not depend on the observed or missing data
 - **MAR** - Missing at random, depends on the observed data, but not the missing data
 - **NMAR** - Not missing at random, depends on the missing data

Need appropriate methods for each of the different types.
Missing values

Missing value imputation

- How to deal with missing values?
 - Ignore the entire row
 - Global constant
 - Use the most common value
 - Use average (mean, median, …) of all other values
 - Apply machine learning techniques, e.g. regression, k-NN, clustering
Redundant data

- Same data, but **multiple times**
- May lead to a bias in the (data mining) results
- How to deal with redundant data?
 - Correlation and covariance analysis
 - Manually inspecting scatter plots
 - Compute correlation, e.g. Pearson’s correlation coefficient
 - Near-duplicate detection
 - e.g. for search engines detect identical versions of the same Web page
Data Cleaning

Redundant data

Example for Weka’s visualisation
Normalisation

- Normalisation of values, e.g. meta-data?
- Example: Normalisation of dates.
 - Many different formats: 09/11/01, 11.09.2001, 11/09/01, ...
 - → e.g. ISO-8601: yyyy-mm-ddThh:mm:ss.nnnnnn+-hh:mm
- Example: Normalisation of person names.
 - → {lastName}, {firstName}, {title}
Noisy data

- Sources of noise: faulty equipment, data entry problems, inconsistencies, data transmission problems, ...

- How to deal with noisy data?
 - Manual - sort out noisy data manually
 - Binning - sort data and partition into bins
 - Equal width (distance) partitioning
 - Equal depth (frequency) partitioning
 - Regression - fitting the data into regression functions
 - Outlier detection
Outlier Detection
Filter out unwanted data
What is an outlier?

- No universally accepted definition of an outlier (anomaly, novelty, change, deviation, surprise, ...)
- **Outlier detection** = detecting patterns that do not conform to an established normal behavior (e.g., rare, unexpected, ...)
What is an outlier?

Definition [Grubbs1969]
An outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs.

Definition [Barnett1994]
An observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data.

Definition [Hawkins1980]
An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.
Sample applications

- Intrusion detection (host-based, network-based)
- Fraud detection (credit cards, mobile phones, insurance claims)
- Medical and public health (patient records, EEG, ECG, disease outbreaks)
- Industrial damage detection (fault detection, structural defects)
- Image processing (Satellite images, robot applications, sensor systems)
- Outlier detection in text data
- etc.
Types of outliers

Point outliers

![Point Outliers Diagram]

Contextual outliers

![Contextual Outliers Diagram]

Collective outliers

![Collective Outliers Diagram]
Basic characterization of techniques I

Supervised outlier detection
- Training data: labelled instances for both normal and outlier class
 - ... size of classes is inherently unbalanced
 - ... obtaining representative samples of the outlier class is challenging

Semi-supervised outlier detection
- Training data: labelled instances for only one class (typically the normal class)
 - ... construct a model corresponding to normal behaviour, and test likelihood that new instances are generated by this model
Unsupervised outlier detection

- Unlabelled training data
 - ... assume that the majority of the instances in the data set are normal
 - In most applications no labels are available
Outlier Detection

Classification based techniques

Train a classifier that distinguishes between normal and outlier classes (multi-class vs one-class detection)

- Neural networks (e.g., Replicator neural networks)
- Bayesian networks
- Support vector machines (e.g., One-class-SVM)
- Rule based (e.g., decision trees)
Outlier Detection

Nearest-neighbor based techniques I

Assume that normal data instances occur in dense neighbourhoods, while anomalies occur far from their closest neighbours (requires a distance or similarity measure)

Using distance to k-th nearest neighbor

- Outlier score = distance to k-th nearest neighbour [Ramaswamy2000]
- Several variants:
 - Count number of nearest neighbours within a certain distance
 - $DB(\epsilon, \pi)$ [Knorr1997]: A point p is considered an outlier if less than π percent of all other points have a distance to p greater than ϵ
Examples for cases, where naive k-NN will not work - due to differences in density or types of regularities not captured by the distance function.
Clustering based techniques

Three categories:

1. Normal instances **belong to a cluster** in the data, while anomalies do not belong to any cluster
 - cluster algorithms that do not assign every instance to a cluster (e.g., DBSCAN)

2. Normal data instances **lie close to their closest cluster centroid**, while anomalies are far away from their closest cluster centroid
 - Self-Organizing Maps (SOM), K-Means, Expectation Maximization, ...

3. Normal data instances **belong to large and dense clusters**, while anomalies belong to small or sparse clusters
 - Cluster-Based Local Outlier Factor (CBLOF): compares distance to centroid with size of the cluster
Outlier Detection

Statistical techniques

Parametric techniques

- Assume the knowledge of an underlying distribution (e.g., Gaussian) and estimate parameters

- e.g., Median Absolute Deviation (MAD) [Hampel1974]

Non-parametric techniques

- e.g., based on histograms
Information theoretic techniques

- Measure the complexity $\mathcal{C}(D)$ of a dataset D
- Outliers: $I = \arg \max_{I \subseteq D} [\mathcal{C}(D) - \mathcal{C}(D - I)]$

Spectral techniques

- Find a lower dimensional subspace in which normal instances and outliers appear significantly different (e.g., PCA)
Other techniques II

Depth-based techniques

- Organize data into convex hull layers

![Diagram showing data set and convex hull layers](image)

(a) the data set

(b) depths and convex hulls

- Points with depth $\leq k$ are reported as outliers
Angle-based techniques

- Angle-based outlier degree (ABOD) [Kriegel2008]:

\[
ABOD(p) = VAR \left(\frac{\langle \vec{x}p, \vec{y}p \rangle}{||\vec{x}p||^2 ||\vec{y}p||^2} \right)
\]

- Outliers have a smaller variance
- More stable than distances in high dimensions
Other techniques III

Angle-based techniques [Kriegel2008]

- Angle-based outlier degree (ABOD):

\[
ABOD(p) = VAR \left(\frac{\langle \vec{x}p, \vec{y}p \rangle}{||\vec{x}p||^2||\vec{y}p||^2} \right)
\]

- Outliers have a smaller variance
- More stable than distances in high dimensions
Other techniques IV

Grid-based subspace outlier detection [Aggarwal2001]

- Partition data space in equi-depth grid ($\Phi =$ number of cells in each dimension)
- Sparsity coefficient $S(C)$ of a grid cell C

$$S(C) = \frac{n(C) - n \cdot \left(\frac{1}{\Phi}\right)^k}{\sqrt{n \cdot \left(\frac{1}{\Phi}\right)^k \cdot \left(1 - \left(\frac{1}{\Phi}\right)^k\right)}}$$

$n(C)$... number of data objects in cell C
- Outliers are located in cells with $S(C) < 0$ ($n(C)$ is lower than expected)
Thank You!
Next up: Feature Extraction

Further information
Special thanks to Stefan Klampfl for his slides on outlier detection