Small World Problem
Web Science (VU) (706.716)

Denis Helic
ISDS, TU Graz
May 9, 2017
Outline

1. Introduction
2. Small World Experiment
3. Small world networks
4. Small World Networks: Intuition
5. Small World Networks: Formalization
6. Distance Contraction in Sparse Networks
7. Small World Phenomenon in Empirical Networks
8. Alternative Small World Models
9. Emergence of Small World Networks
10. Applications
Do I know somebody in...?

Sa Li
Quality gate engineer
BENG mobile beijing
Beijing, China

Status: Employee
Wants: --
Haves: --
Company: BENG mobile beijing, Quality gate engineer (09/2006 -)
Industry: Electronics/IT
Previous companies: 1. EPDK, supervisor (05/2001 - 08/2006)
Interests: Swimming, Badminton, Dancing, Reading, Cafe, Travel

Options:
- Add as contact
- Send message
- Add to friends
- Bookmark
- Show location
- Show route

Menu:
- Create memo

Sa Li's statistics
- No Premium Membership
- Member since: 10/2006
- Profile hits: 221
- Direct contacts: 25
- Activity meter: 60%

Edit shared personal info:
- All contact details
- Business
- Private
- Instant messaging data
- Birthday
- Year of birth
- Languages

Denis Helic (ISDS, TU Graz)
Introduction

The Bacon Number

Kevin Bacon

Overview
Date of Birth: 8 July 1958, Philadelphia, Pennsylvania, USA

Mini Biography: Kevin Bacon's early training as an actor came from The Manning Street... more

Trivia: His line, "I am a G-damn genius," is quoted in both "Hollow Man" (2000)... more

Awards: Nominated for Golden Globe. Another 8 wins & 7 nominations more

Alternate Names: The Bacon Brothers / Kevin Bacon II / the Bacon Brothers

Filmography
Jump to Filmography as: Actor, Director, Producer, Soundtrack, Thanks, Self, Archive Footage

Actor:
In Production:
 - Lt. Col. Michael Strabl

Completed:
 - Jack Brennan

TV:
4. The B-books (2007)
 - Rear Window
5. Death Sentence (2007)

Biographical:
- biography
- children
- quotes
- bibliography
- television appearances
- filmography
- filmography
- other works
- public appearance information

Denis Helic (ISDS, TU Graz)
The Kevin Bacon Game
The Bacon Number

Table 3.1: Distribution of Actors According to Bacon Number

<table>
<thead>
<tr>
<th>Bacon Number</th>
<th>Number of Actors</th>
<th>Cumulative Total Number of Actors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1,550</td>
<td>1,551</td>
</tr>
<tr>
<td>2</td>
<td>121,661</td>
<td>123,212</td>
</tr>
<tr>
<td>3</td>
<td>310,365</td>
<td>433,577</td>
</tr>
<tr>
<td>4</td>
<td>71,516</td>
<td>504,733</td>
</tr>
<tr>
<td>5</td>
<td>5,314</td>
<td>510,047</td>
</tr>
<tr>
<td>6</td>
<td>652</td>
<td>510,699</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>510,789</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>510,827</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>510,828</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>510,829</td>
</tr>
</tbody>
</table>
The Erdös Number

- Who was Erdös?
- http://www.oakland.edu/enp/
- A famous Hungarian Mathematician, 1913-1996
- Erdös posed and solved problems in number theory and other areas and founded the field of discrete mathematics
- 511 co-authors (Erdös number 1)
Introduction

The Erdös Number

- The Erdös Number
- Through how many research collaboration links is an arbitrary scientist connected to Paul Erdös?
- What is a research collaboration link?
- Per definition: Co-authorship on a scientific paper
- What is my Erdös Number? 4
- me → H. Maurer → W. Kuich → N. Sauer → P. Erdös
- http://www.ams.org/mathscinet/collaborationDistance.html
CHAPTER 2. GRAPHS

Figure 2.12: Ron Graham's hand-drawn picture of a part of the mathematics collaboration graph, centered on Paul Erdős [189]. (Image from http://www.oakland.edu/enp/cgraph.jpg)

One of the largest such computational studies was performed by Jure Leskovec and Eric Horvitz [273]. They analyzed the 240 million active user accounts on Microsoft Instant Messenger, building a graph in which each node corresponds to a user, and there is an edge between two users if they engaged in a two-way conversation at any point during a month-long observation period. As employees of Microsoft at the time, they had access to a complete snapshot of the system for the month under study, so there were no concerns about missing data. This graph turned out to have a giant component containing almost all of the nodes, and the distances within this giant component were very small. Indeed, the distances in the Instant Messenger network closely corresponded to the numbers from Milgram's experiment, with an estimated average distance of 6.6, and an estimated median...
Stanley Milgram

- A social psychologist
- Yale and Harvard University
- Study on the Small World Problem
- Controversial: The Obedience Study
- What we will discuss today: “An Experimental Study of the Small World Problem”
The simplest way of formulating the small-world problem is: Starting with any two people in the world, what is the likelihood that they will know each other?

A somewhat more sophisticated formulation, however, takes account of the fact that while person X and Z may not know each other directly, they may share a mutual acquaintance - that is, a person who knows both of them. One can then think of an acquaintance chain with X knowing Y and Y knowing Z. Moreover, one can imagine circumstances in which X is linked to Z not by a single link, but by a series of links, X-A-B-C-D…Y-Z. That is to say, person X knows person A who in turn knows person B, who knows C… who knows Y, who knows Z.
Small world experiment

- A Social Network Experiment tailored towards demonstrating, defining, and measuring inter-connectedness in a large society (USA)
- A test of the modern idea of “six degrees of separation”
- Which states that: every person on earth is connected to any other person through a chain of acquaintances not longer than 6
Experiment

Goal
1. Define a single target person and a group of starting persons
2. Generate an acquaintance chain from each starter to the target

Experimental Set Up
1. Each starter receives a document
2. Each starter was asked to begin moving it by mail toward the target
3. Information about the target: name, address, occupation, company, college, year of graduation, wife’s name and hometown
4. Information about relationship (friend/acquaintance)
Experiment

Constraints

1. Starter group was only allowed to send the document to people they know and
2. Starter group was urged to choose the next recipient in a way as to advance the progress of the document toward the target
Questions

- How many of the starters would be able to establish contact with the target?
- How many intermediaries would be required to link starters with the target?
- What form would the distribution of chain lengths take?
Set Up

- **Target person**
 1. A Boston stockbroker

- **Three starting populations**
 1. 100 “Nebraska stockholders”
 2. 96 “Nebraska random”
 3. 100 “Boston random”
Set Up

Nebraska stockholders

Nebraska random

Boston random

Target

Boston stockbroker
Results

- How many of the starters would be able to establish contact with the target?
 1. 64 out of 296 reached the target

- How many intermediaries would be required to link starters with the target?
 1. Well, that depends: the overall mean 5.2 links
 2. Through hometown: 6.1 links
 3. Through business: 4.6 links
 4. Boston group faster than Nebraska groups
 5. Nebraska stockholders not faster than Nebraska random

- What form would the distribution of chain lengths take?
Chain length distribution

![Chain length distribution graph](image)

- Number of chains vs. number of intermediaries
- N=64

Denis Helic (ISDS, TU Graz)
Results

- What have been common strategies?
 1. Geography
 2. Profession

- What are the common paths?
 1. See e.g. Gladwell’s “Law of the few”
Common paths and gatekeepers

FIGURE 3

Common Paths Appear as Chains Converge on the Target
Conclusions and 6 degrees of separation

- So is there an upper bound of six degrees of separation in social networks?
 1. Extremely hard to test
 2. In Milgram’s study, 2/3 of the chains did not reach the target
 3. 1/3 random, 1/3 blue chip owners, 1/3 from Boston
 4. Danger of loops (mitigated in Milgram’s study through chain records)
 5. Target had a “high social status”
Follow up work

Figure 10: Number of users at a particular geographic location. Color represents the number of users. Notice the map of the world appears.
Follow up work

- Horvitz and Leskovec study 2008
- 30 billion conversations among 240 million people of Microsoft Messenger
- Communication graph with 180 million nodes and 1.3 billion undirected edges
Follow up work

- Approximation of “Degrees of separation”
- Random sample of 1000 nodes
- For each node the shortest paths to all other nodes was calculated. The average path length is 6.6, median at 7
- Result: a random pair of nodes is 6.6 hops apart on the average, which is half a link longer than the length reported by Travers/Milgram
Follow up work

- The 90th percentile (effective diameter (16)) of the distribution is 7.8. 48% of nodes can be reached within 6 hops and 78% within 7 hops.
- Finding that there are about “7 degrees of separation” among people.
- Long paths exist in the network; paths up to a length of 29.
Small World Experiment

Chain length distribution

Figure 2.11: The distribution of distances in the graph of all active Microsoft Instant Messenger user accounts, with an edge joining two users if they communicated at least once during a month-long observation period [273].

Step connections to CEOs and political leaders don’t yield immediate payoffs on an everyday basis, the existence of all these short paths has substantial consequences for the potential speed with which information, diseases, and other kinds of contagion can spread through society, as well as for the potential access that the social network provides to opportunities and to people with very different characteristics from one’s own. All these issues — and their implications for the processes that take place in social networks — are rich enough that we will devote Chapter 20 to a more detailed study of the small-world phenomenon and its consequences.

One reason for the current empirical consensus that social networks generally are “small worlds” is that this has been increasingly confirmed in settings where we do have full data on the network structure. Milgram was forced to resort to an experiment in which letters served as “tracers” through a global friendship network that he had no hope of fully mapping on his own; but for other kinds of social network data where the full graph structure is known, one can just load it into a computer and perform the breadth-first search procedure to determine what typical
Follow up work at Facebook

- Facebook study: February 2016
- https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/
- 1.5 billion users
- \(\sim 3.5\) degrees of separation
- Approximative algorithms for calculating average distance
Small world networks

- Every pair of nodes is connected by a path with an extremely small number of steps
- Low diameter ℓ_{max}
- Low average distance $\bar{\ell}$
The small-world effect exists, if the number of nodes within a distance s of a typical central vertex grows exponentially with s. In other words, networks are said to show the small-world effect if the value of $\bar{\ell}$ scales logarithmically or slower with network size for a fixed average degree \bar{k}.

- According to this definition a random graph is a small-world network since $\bar{\ell}_{random} \approx \frac{\ln(n)}{\ln(\bar{k})}$
- However, there are other properties that a (realistic) small-world network must possess
When we would perceive a network as small:

1. The path length $\bar{\ell}$ scales maximally logarithmically with n for a fixed \bar{k}
2. The network itself is large in the sense that it contains $n \gg 1$ nodes
3. The network is sparse, i.e. $n \gg \bar{k}$
4. The network is decentralized, i.e. there is no central node that connects to almost every other node
5. The network is highly clustered, i.e. many of our friends are also friends of each other
Explanations to the criteria:

1. If ℓ scales e.g. linearly then for e.g. $n = 10^6$ the network is clearly not small.
2. If n is small as in e.g. a social network of a small town then there is a high chance that everyone knows each other and therefore ℓ is small, i.e. (1) is trivially satisfied.
3. A person has on average a couple hundreds of friends among e.g. $8 \cdot 10^9$ people in the world, i.e. it is a sparsely connected network.
Explanations to the criteria:

4. Even if some people are better connected than the others, there are physical constraints on the number of (mutual) connections (this criteria can be expressed as $n \gg k_{max}$)

5. Fraction of friends who are also friends of each other is significantly higher than in a random network. Otherwise our friends will be equally likely to come from a different country, occupation, etc. (this eliminates a random network from being a small-world network)

We are looking for networks where local clustering is high and global path lengths are small
The Cavemen World: highly clustered social connections
The Solaris World: random social connections
Small world networks

- Two seemingly contradictory requirements for the Small World Phenomenon:
 - 1. Network should display a large clustering coefficient, so that a node's friends will know each other (as in Caveman world)
 - 2. It should be possible to connect two people chosen at random via chain of only a few intermediaries (as in Solaria world)
A random graph model

- Now we will analyze an ensemble of networks, i.e. a special random graph model.
- Recollect that an ensemble defines a probability distribution over all possible graphs.
- We will characterize networks in terms of ℓ and C.
- In order to decide if a network is "small" or "large" we need to determine the ranges over which ℓ and C vary.

Duncan Watts

This part of the slides is based on the paper "‘Networks, Dynamics, and the Small-World Phenomenon’" by D. Watts.
Constraints for the model

- All networks need to satisfy the following constraints:
 1. We fix n
 2. Graph is sparse but sufficiently dense, i.e. $1 \ll \bar{k} \ll n$. Wide range of structures are possible
 3. The graphs are connected
Extremal properties

- What is the largest value for C and in what kind of a graph we observe such C?

$C = 1$ in a complete graph ($k = n - 1$)

- What is the minimal value for C and which graph has that?

$C = 0$ in an empty graph ($k = 0$)

What is ℓ in those two graphs?

Complete graph: $\ell = 1$, empty graph: $\ell = \infty$

These are theoretical extremal points.
Extremal properties

- What is the largest value for C and in what kind of a graph we observe such C?
- $C = 1$ in a complete graph ($\bar{k} = n - 1$)
- What is the minimal value for C and which graph has that?
- $C = 0$ in an empty graph ($\bar{k} = 0$)
- Complete graph: $\ell = 1$, empty graph: $\ell = \infty$
Extremal properties

- What is the largest value for C and in what kind of a graph we observe such C?
 - $C = 1$ in a complete graph ($\overline{k} = n - 1$)

- What is the minimal value for C and which graph has that?
 - $C = 0$ in an empty graph ($\overline{k} = 0$)

- What is ℓ in those two graphs?
Extremal properties

- What is the largest value for C and in what kind of a graph we observe such C?
 - $C = 1$ in a complete graph ($\bar{k} = n - 1$)

- What is the minimal value for C and which graph has that?
 - $C = 0$ in an empty graph ($\bar{k} = 0$)

- What is $\bar{\ell}$ in those two graphs?
 - Complete graph: $\bar{\ell} = 1$, empty graph $\bar{\ell} = \infty$

- These are theoretical extremal points
However, it is obvious how $\bar{\ell}$ and C will change when we start with an empty graph and add more links.
Extremal properties

- However, it is obvious how $\bar{\ell}$ and C will change when we start with an empty graph and add more links.
- $\bar{\ell}$ will go down and C will increase.
- A more interesting question is how these statistics change when we rearrange a fixed number of links m.
- We arrive at the last constraint for our model:
 - m is fixed.
Small world networks

For such graphs, we will now try to answer these questions:

1. What is the most clustered graph and what are its C and ℓ?
2. What graph has the smallest ℓ and what are its C and ℓ?
3. What is the relation between C and ℓ in sparse graphs?
Sparse graph with the largest C

- We construct a *caveman world*
- It consists of $\frac{n}{k+1}$ isolated caves (cliques)
- All $k + 1$ nodes in each cave are connected to all other nodes in that cave
- This graph has $C = 1$
- But it is not connected!
- We rewire a single link from each clique and connect it to a neighboring clique
- We form a loop
Sparse graph with the largest C
C in caveman world

- We first calculate the clustering coefficient of a single cave.
- Later, we will use that result to obtain the total clustering coefficient by taking into account the number of caves.
Each cave has \((k + 1)\) nodes, there are \(\frac{n}{k+1}\) caves altogether.

We have 4 types of nodes in each cave.

We have \((k - 2)\) of nodes of type 1, and one node each of types 2, 3, and 4.

We recollect that the number of possible links between neighbors of a node with degree \(k\) is \(\frac{k(k-1)}{2}\).

\[
C_1 = \frac{k(k-1)}{2} - 1 = \frac{k(k-1)-2}{2} = 1 - \frac{2}{k(k-1)}
\]

\[
C_2 = 1
\]

\[
C_3 = \frac{(k-1)(k-2)}{2} = \frac{(k-1)(k-2)}{k(k-1)} = 1 - \frac{2}{k}
\]
C in caveman world

\[
C_4 = \frac{k(k-1)-2}{\frac{k}{2}} \frac{1}{(k+1)k} = \frac{k^2 - k - 2}{(k+1)k} = \frac{k^2 + k - 2k - 2}{(k+1)k} = \frac{k(k+1) - 2(k+1)}{(k+1)k} = \frac{(k+1)(k-2)}{(k+1)k} = 1 - \frac{2}{k}
\]
C in caveman world

- Now we sum clustering coefficients of all nodes in a single cave

$$\sum_{\text{cave}} C_i = \left(1 - \frac{2}{k(k-1)}\right)(k-2) + 2\left(1 - \frac{2}{k}\right) + 1$$

$$= k - 2 - (k - 2)\frac{2}{k(k-1)} + 3 - \frac{4}{k}$$

$$= (k + 1) - \frac{2}{k-1} + \frac{4}{k(k-1)} - \frac{4}{k}$$

$$= (k + 1) + \frac{-2k + 4 - 4(k - 1)}{k(k-1)} = (k + 1) + \frac{-6k + 8}{k(k-1)}$$

$$= (k + 1) - \frac{6k}{k(k-1)} + \frac{8}{k(k-1)}$$

$$= (k + 1) - \frac{6}{k - 1} + \frac{8}{k(k-1)}$$
The third term is \(O(k^{-2}) \) and under the assumption that \(k \gg 1 \) can be ignored.

Thus, the approximated sum of clustering coefficients over a cave:

\[
\sum_{cave} C_i \approx (k + 1) - \frac{6}{k - 1}
\]
The total clustering coefficient is then sum over all caves divided by the number of nodes

\[
C_{\text{caveman}} \approx \frac{\kappa}{k+1} ((k+1) - \frac{6}{k-1}) \frac{1}{\kappa}
\]

\[
= 1 - \frac{6}{k^2 - 1}
\]

Again, assuming \(k \gg 1 \) the clustering coefficient is close to 1 as we expected
\[\ell \text{ in caveman world} \]

- The average distance in a caveman world is composed of a local distance within the caves and a global distance between the caves.
- We first calculate \(\ell_{local} \).
- One link is missing and therefore we have 1 pair of nodes at distance 2 and the remaining \(\left(\frac{k(k+1)}{2} - 1 \right) \) pairs at distance 1:

\[
\ell_{local} = \frac{2}{k(k+1)} \left[\left(\frac{k(k+1)}{2} - 1 \right) \cdot 1 + 1 \cdot 2 \right]
\]

\[
= \frac{2}{k(k+1)} \left[\left(\frac{k(k+1)}{2} + 1 \right) \right]
\]

\[
= 1 + \frac{2}{k(k+1)}
\]

- Assuming \(k \gg 1 \) we have \(\ell_{local} \approx 1 \).
\(\overline{\ell} \) in caveman world

- To calculate \(\overline{\ell}_{\text{global}} \) we first abstract caves as simple nodes.
- In this way \(n' = \frac{n}{k+1} \) caves are ordered into a topological ring.
- For simplicity (without loss of generality) we assume that \(n' \) is even.
- Then \(\overline{\ell}_{\text{global}} \) determines average distance between caves.
- We start by calculating sum of distances of a single node \(i \) from the ring.
\[
\ell \text{ in caveman world}
\]

\[
\sum_{j} \ell_{i,j} = 2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + \cdots + 2 \left(\frac{n'}{2} - 1 \right) + 1 \cdot \frac{n'}{2}
\]

\[
= 2 \left(1 + 2 + 3 + \cdots + \frac{n'}{2} \right) - \frac{n'}{2}
\]

\[
= 2 \left(\frac{n'}{2} + 1 \right) \frac{n'}{2} - \frac{n'}{2}
\]

\[
= \frac{n'}{2} \left(\frac{n'}{2} + 1 - 1 \right)
\]

\[
= \frac{n'^2}{4}
\]
Then, we sum over all nodes and divide by the total number of pairs (in both directions):

\[
\mathbb{\ell}_{\text{global}} = \frac{n'2}{4} \frac{1}{n'(n' - 1)} = \frac{n'^2}{4(n' - 1)}
\]

\[
= \frac{(\frac{n}{k+1})^2}{4\left(\frac{n}{k+1} - 1\right)}
\]

Assuming \(1 \ll k \ll n\) we have \(\left(\frac{n}{k+1} - 1\right) \approx \frac{n}{k+1}\).

This gives \(\mathbb{\ell}_{\text{global}} \approx \frac{n}{4(k+1)}\).
Now we want to calculate average distance for nodes i and j from two different caves.

Starting at i we first need to go outside its cave: for this we need ℓ_{local} steps on average.

To reach the cave in which j is situated we need to make $2\ell_{global} - 1$ steps (one step to reach a cave and another to go through and -1 because we do not go through the last cave).

To reach j in the last cave we need another ℓ_{local} steps on average.
\(\bar{\ell} \) in caveman world

- Altogether we have:

\[
\ell_{ij} = 2\bar{\ell}_{local} + 2\bar{\ell}_{global} - 1
\approx 2 + 2 \frac{n}{4(k+1)} - 1 = \frac{n}{2(k+1)} + 1
\]

- Assuming \(1 \ll k \ll n \) we have \(\ell_{ij} \approx \frac{n}{2(k+1)} \)
Now we need to count how many pairs of nodes are from the same cave and how many from different caves

\[\#(\text{local} - \text{pairs}) = \frac{k(k+1)}{2} \cdot \frac{n}{k+1} = \frac{nk}{2} \]

Then \(\#(\text{global} - \text{pairs}) \) is the total number of pairs minus \(\#(\text{local} - \text{pairs}) \):

\[\#(\text{global} - \text{pairs}) = \frac{n(n-1)}{2} - \frac{nk}{2} = \frac{n(n-k-1)}{2} \]
Finally, we have all terms to calculate $\bar{\ell}_{caveman}$:

$$\bar{\ell}_{caveman} \approx \frac{2}{\kappa(n-1)} \left[\frac{\kappa k}{2} \cdot 1 + \frac{\kappa(n-k-1)}{2} \frac{n}{2(k+1)} \right]$$

$$= \frac{k}{n-1} + \frac{n(n-k-1)}{2(k+1)(n-1)}$$

Assuming $k \ll n$ we have $(n-1) \approx n$, $(n-k-1) \approx n$ and $\frac{k}{n-1} \approx 0$

After canceling: $\bar{\ell}_{caveman} \approx \frac{n}{2(k+1)}$
Sparse graph with the largest C

- Thus, for the connected caveman graph we have:

$$C_{caveman} \approx 1 - \frac{6}{(k)^2 - 1}$$

$$\ell_{cavemen} \approx \frac{n}{2(k + 1)}$$

- $C_{caveman}$ tends to 1 for sufficiently large $k \ll n$
- $\ell_{cavemen}$ scales linearly with n
Sparse graph with the smallest $\bar{\ell}$

- Studies have shown that no general structure possesses the smallest $\bar{\ell}$
- Cerf et al. ‘‘A lower bound on the average shortest path length in regular graphs’’
- A good approximation can be achieved by a random graph $G(n, p)$
- Bolobas, Bela. ‘‘Random Graphs’’

Sparse graph with the smallest $\bar{\ell}$

- $\bar{\ell}_{random} \approx \frac{\ln(n)}{\ln(k)}$
- $C_{random} \approx \frac{k}{n-1}$
- For large n
- Scaling of $\bar{\ell}_{random}$ is logarithmic in n
- Sparsity: $k \ll n \implies C_{random}$ is very small
Conclusions from extreme cases

- C is a simple measure of *local order* in a graph
- Large C as in caveman graphs indicates a strong local order
- On the other hand, a random graph is locally disordered
- Intuition 1: Highly clustered (locally ordered) graphs will have long average distances (linear scaling)
- Intuition 2: Graphs with small average distances will have also a small clustering coefficient (no clustering)
- No small-worlds after all?
- But many studies observed them!
Both extreme cases are not very realistic

One extreme case: total order, in which two people become friends only if they share a common friend

Another extreme case: randomness, in which two people become friends regardless of connections that they already have

The real world is somewhere between those two extreme cases

But we do not know exactly where is the reality: it has both of these mechanisms but we do not know to what extents

Let us model all the situations in between

Keep the model simple: we will introduce a single parameter
The question is: how already existing links influence creation of new links.

We want to model all intermediate stages between order and randomness with a single parameter.

- Total order: new friends only if mutual friends (Caveman world)
- Randomness: new friends completely autonomously (Solaria World)
Probability of becoming friends
Probability of becoming friends

- **Order:**
 1. Probability of becoming friends if no mutual friends is almost zero
 2. With one friend in common, probability of becoming friend jumps to almost one and stays there

- **Randomness:**
 1. No preference to become friends to anybody in particular
 2. If all friends are mutual, friends probability climbs to one
Probability of becoming friends

- In between the curve can take any of the infinite numbers of possible forms
- It needs to remain smooth and monotonically increasing
- Single tunable parameter $\alpha \in [0, \infty]$

\[
R_{ij} = \begin{cases}
1 & m_{ij} \geq \bar{k} \\
\left(\frac{m_{ij}}{\bar{k}} \right)^\alpha (1 - p) + p & \bar{k} > m_{ij} > 0 \\
p & m_{ij} = 0
\end{cases}
\] (1)

- R_{ij} probability of node i connecting to node j, m_{ij} the number of mutual friends, \bar{k} is the average degree, and p is a baseline probability for a link (i, j)
Probability of becoming friends

- What do we have for a small α or $\alpha = 0$
Probability of becoming friends

- What do we have for a small α or $\alpha = 0$?
- Total order
- What do we have for $\alpha \to \infty$?
Probability of becoming friends

- What do we have for a small α or $\alpha = 0$
- Total order
- What do we have for $\alpha \rightarrow \infty$
- Random graph
Numerical simulation

- We can not derive much analytically
- Thus, we construct a large number of graphs by fixing n and \bar{k} and varying α
- For each α we create a number of graphs and calculate $\bar{\ell}$ and C
- We then plot averages of these experiments against α
- Another problem: if we start from an empty graph we will end up with an unconnected graph for small α
- We start with a ring
Numerical simulation

![Graph showing characteristic path length vs alpha]

- X-axis: \(\alpha \)
- Y-axis: Characteristic Path Length

The graph illustrates the relationship between \(\alpha \) and the characteristic path length in a network, demonstrating how distance contraction occurs in sparse networks.
Numerical simulation
Numerical simulation

- For large α both statistics approach their expected random graph limit
- At $\alpha = 0$ both statistics are large and increase quickly to their maximum at small α
- Both statistics exhibit a sharp transition (phase transition) from their maximum values to their limits for large α
Numerical simulation
Numerical simulation

- Phase transitions of C and $\bar{\ell}$ are shifted with α
- The transition of C occurs with larger values of α
- Thus, there exists a class of graphs in a specific region of α for which $\bar{\ell}$ is small and C is large
- The region is limited by a smaller α for which phase transition in $\bar{\ell}$ occurs and a larger value of α for which phase transition for C occurs
Small world networks

The small-world phenomenon is present when:

\[\bar{l} \approx \bar{l}_{\text{random}} \]

\[C \gg C_{\text{random}} \]
Short Recap

- Now we know that small networks exist
- We also understand something about ratio of order and randomness
- But we still do not know why there is a distance contraction
- While simultaneously clustering coefficient remains large
- Any ideas?
Theory of distance contraction

- Let us investigate how a newly created link contributes to the contraction of the average distance
- We start with $\alpha = 0$
- $R_{ij} = 1$ if $m_{ij} > 0$, i.e. if i and j share mutual friends they will be connected (triadic closure)
- Before the $l_{ij} = 2$, after $l_{ij} = 1$
- Little to no distance contraction globally
- In a random graph i and j that are close have the same chance to be connected by a new link as k and l that are far apart
Theory of distance contraction

- Now we define a range r of a link (i, j) as the distance $\ell_{i,j}$ between i and j when the link has been deleted.
- We define a link as a shortcut if its range $r > 2$.
- Finally, we define Φ as the fraction of links that are shortcuts, i.e.
 $$\Phi = \frac{\#\text{shortcuts}}{m}$$
- Now we plot the evolution of C and $\bar{\ell}$ as the function of Φ.
Theory of distance contraction
Theory of distance contraction

- We see that the distance contraction occurs already for a very small fraction of shortcuts.
- Intuition is that for small Φ the average distance is large.
- Introduction of even a single shortcut brings nodes close that were previously widely separated.
- This shortcut reduces the distance not only between two nodes that are connected.
- But also between their friends, friends of friends, etc.
- On the other hand, clustering coefficient does not drop dramatically since only a couple of triads are not closed.
Theory of distance contraction

- Shortcuts are sufficient but not necessary
- Any link that brings two nodes closer together will do the job
- A contraction occurs when the second shortest path length between two nodes (sharing a common neighbor) is greater than two
- In other words, a contraction is a pair of nodes that share one and only one common friend
- We define Ψ as the fraction of contractions
Theory of distance contraction
Theory of distance contraction
Theory of distance contraction

- Common friend in a contraction \(\implies\) common friend is pivotal
- Common friend in a contraction \(\implies\) common friend is a local gatekeeper
- The other direction does not hold
- E.g. a pivotal node that is not a common friend
- Pair of nodes having more than one local gatekeepers
Small world in empirical networks

Table 1 Empirical examples of small-world networks

<table>
<thead>
<tr>
<th></th>
<th>L_{actual}</th>
<th>L_{random}</th>
<th>C_{actual}</th>
<th>C_{random}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film actors</td>
<td>3.65</td>
<td>2.99</td>
<td>0.79</td>
<td>0.00027</td>
</tr>
<tr>
<td>Power grid</td>
<td>18.7</td>
<td>12.4</td>
<td>0.080</td>
<td>0.005</td>
</tr>
<tr>
<td>C. elegans</td>
<td>2.65</td>
<td>2.25</td>
<td>0.28</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Characteristic path length L and clustering coefficient C for three real networks, compared to random graphs with the same number of vertices (n) and average number of edges per vertex (k). (Actors: $n = 225,226$, $k = 61$. Power grid: $n = 4,941$, $k = 2.67$. *C. elegans*: $n = 282$, $k = 14$.) The graphs are defined as follows. Two actors are joined by an edge if they have acted in a film together. We restrict attention to the giant connected component\(^6\) of this graph, which includes $\sim 90\%$ of all actors listed in the Internet Movie Database (available at http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators, transformers and substations, and edges represent high-voltage transmission lines between them. For *C. elegans*, an edge joins two neurons if they are connected by either a synapse or a gap junction. We treat all edges as undirected and unweighted, and all vertices as identical, recognizing that these are crude approximations. All three networks show the small-world phenomenon: $L \gg L_{\text{random}}$ but $C \gg C_{\text{random}}$.
Small world in empirical networks
Small world in empirical networks

![Graph showing small-world graphs and connected-caveman graphs with Clustering Transition and Length Transition]

- Small-world graphs
- Connected-caveman graphs
- Clustering Transition
- Length Transition
- Small Alpha
Watts’ β-model

Figure 3.6. Construction of the beta model. The links in a one-dimensional, periodic lattice are randomly rewired with probability beta (β). When beta is zero (left), the lattice remains unchanged, and when beta is one (right), all links are rewired, generating a random network. In the middle, networks are partly ordered and partly random (for example, the original link from A to B has been rewired to B_{new}).
Watts’ β-model

Figure 3.7. Path length and clustering coefficient in the beta model.

As with the alpha model (see Figure 3.4), small-world networks exist when path length is small and the clustering coefficient is large (shaded region).
Watts’ β-model

- NetLogo Example
- http://ccl.northwestern.edu/netlogo/models/SmallWorlds
Affiliation networks and small world

- Separate social and network structure
- Social structure implies two types of nodes, e.g. actors and movies
- Actors are connected to movies they acted in, and vice versa
- Co-Acting network is then constructed in the following way
 1. A given actor is connected to all actors from a given movie
 2. We repeat this procedure for all movies
Affiliation networks and small world

Figure: $\ell = 1.62$, $C = 0.7879$
Affiliation networks and small world

- Small-world networks arise naturally
- Divide nodes in two groups that reflect the social context, e.g. actors and movies, people and professions (hobbies), etc.
- But also information networks, e.g. tags and photos, hashtags and tweets in twitter, etc.
- Projection on one type of nodes, e.g. actors, people, tags, hashtags is always a small-world
- Why is this the case?
Affiliation networks and small world

- By definition every actor in a movie is connected to every other actor in that movie
- This is a fully connected clique of actors – local clustering is high
- Networks are then networks of overlapping cliques – locked together by actors acting in multiple movies
- By “randomly” connecting actors to movies we obtain a network with low diameter
- High local clustering + low diameter = small-world networks
Affiliation networks and small world

- NetLogo Example
- http://kti.tugraz.at/staff/socialcomputing/courses/webscience/SWAffiliation.nlogo
Applications and engineering

- We have learned what are small world networks and how they emerge?
- In what kind of applications can these new insights be applied?
- Many different possibilities, e.g. information retrieval on the Web – navigation
- Information diffusion in online social networks, e.g. viral marketing
Recommender systems

- In many recommender systems networks look very much like Cavemen World
- Isolated caves of similar and related items
- But almost no connections to other caves
- We have learned that a few (random) long-range links can turn such a world into a small world
- Serendipity in recommender networks
- How to have a surprise effect and connect various caves?